

2021 SARTRAC SCIENTIFIC SARGASSUM SERIES

RISK MANAGEMENT STRATEGY FOR SARGASSUM STRANDING IN JAMAICA AND THE CARIBBEAN

Prepared by:

Dr. Kerrine Senior Dr. Ava Maxam Mr. Romario Anderson WT 2.5 CO-DEVELOPMENT OF RISK MANAGEMENT STRATEGY

SARTRAC (Teleconnected SARgassum risks across the Atlantic: building capacity for TRansformational Adaptation in the Caribbean and West Africa)

SARTRAC: OUR FOCUS

To identify new transformational developmental opportunities that build resilience equitably, for people affected by changing biomes / ecosystems in least developed countries.

Partners:

Southampton MONA Secure Commences MG MONA Secure Commences MG

Work Packages:

WP1-Drivers WP2-Monitoring **WP3**-Transformational Adaptation **WP4**-Governance

SARGASSUM DETECTION MODEL

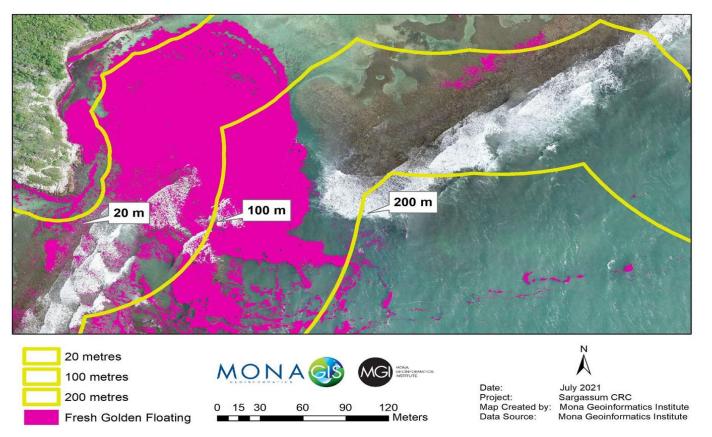
PHYSICAL CHARACTERISTICS OF SHORELINE

VOLUMETRIC QUANTIFICATION OF SARGASSUM

SARGASSUM DETECTION MODEL

PHYSICAL CHARACTERISTICS OF SHORELINE

VOLUMETRIC QUANTIFICATION OF SARGASSUM


SARGASSUM DETECTION SANDHILLS BAY, ST. CATHERINE

Comparative images illustrating inshore fresh golden sargassum detection at Sandhills Bay, St. Catherine.

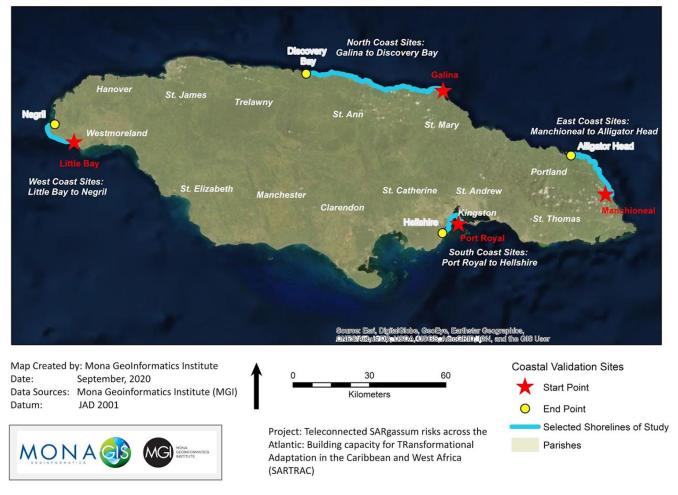
SARGASSUM DETECTION WRECK BAY, ST. CATHERINE

Inshore sargassum detection at Wreck Bay within 20m, 100m and 200m intervals of the coastline.

SARGASSUM DETECTION MODEL

PHYSICAL CHARACTERISTICS OF SHORELINE

VOLUMETRIC QUANTIFICATION OF SARGASSUM


SARGASSUM DETECTION MODEL

PHYSICAL CHARACTERISTICS OF SHORELINE

VOLUMETRIC QUANTIFICATION OF SARGASSUM

Jamaica

SARGASSUM MONITORING: COASTAL VALIDATION SITES

Map showing coastal validation sites

Sargassum volume estimation through establishment of line transects in Manchioneal, Portland, Jamaica

SARGASSUM DETECTION MODEL

PHYSICAL CHARACTERISTICS OF SHORELINE

VOLUMETRIC QUANTIFICATION OF SARGASSUM

INDEX TO QUANTIFY RISK TO COMMUNITIES

RISK MANAGEMENT STRATEGY

2021

SARTRAC SCIENTIFIC SARGASSUM SERIES

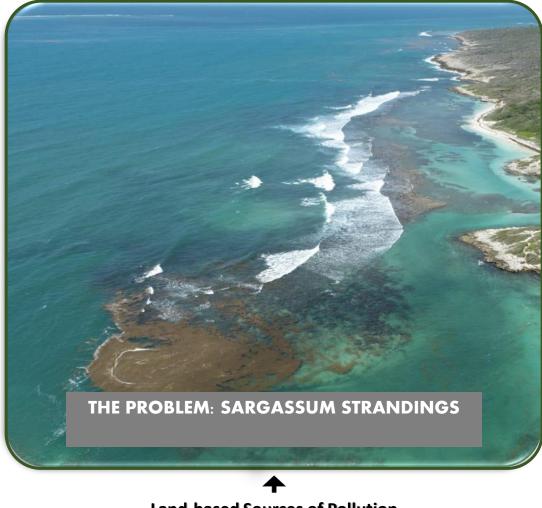
RISK MANAGEMENT STRATEGY FOR SARGASSUM STRANDING IN JAMAICA AND THE CARIBBEAN WT 2.5 CO-DEVELOPMENT OF RISK MANAGEMENT STRATEGY

Prepared by:

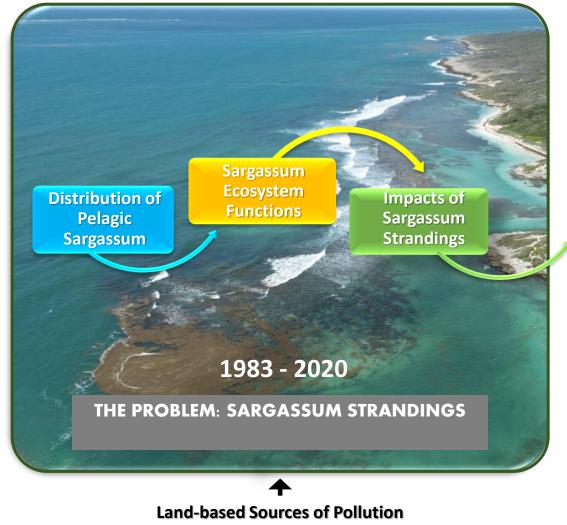
Dr. Kerrine Senior Dr. Ava Maxam Mr. Romario Anderson

PURPOSE

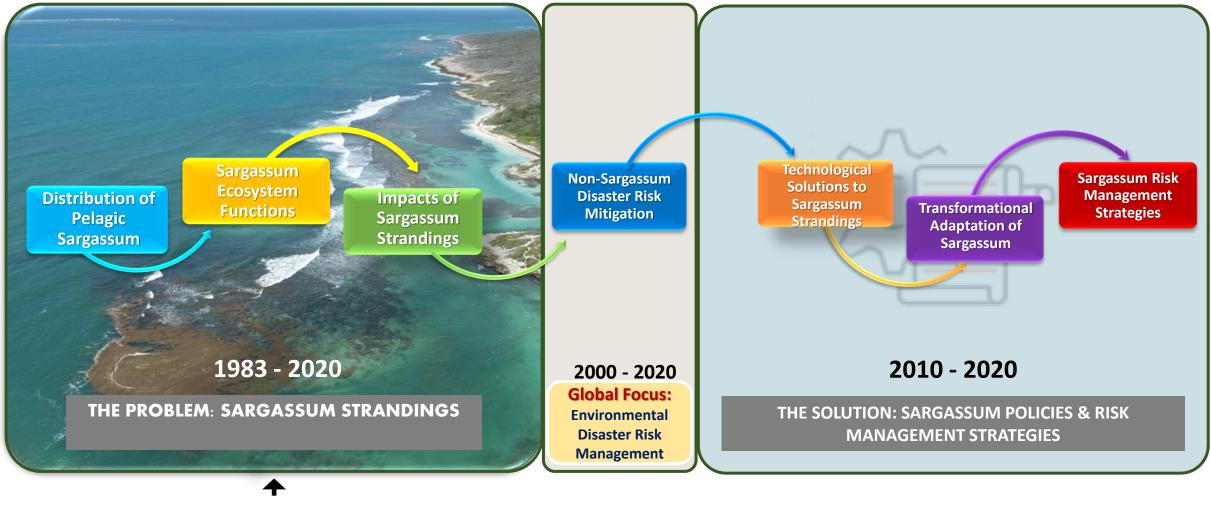
Define a risk management framework for impact of *Sargassum* strandings in Jamaica and the Caribbean


OBJECTIVES

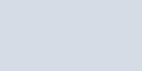
- Maintain Risk Management Principles
- Prepare a Risk Register
- Assist the most vulnerable stakeholders
- Rank all risks
- Allocate clear roles



OBJECTIVES


- Regulatory compliance and CSR
- Raise awareness
- Obtain commitment

Land-based Sources of Pollution to the Marine Environment



to the Marine Environment

Land-based Sources of Pollution to the Marine Environment

Μ

Α

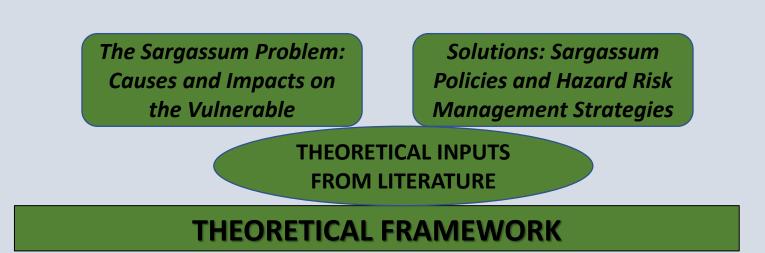
R

MONA GEOINFORMATICS

V

U

Ν


Ε

R

A

В

Y

S T A R G I N A L

Ζ

F

D

Μ

0

EQUITABLE RESILIENCE

Μ

0

S

Μ

A

R

G

Ν

Α

Ζ

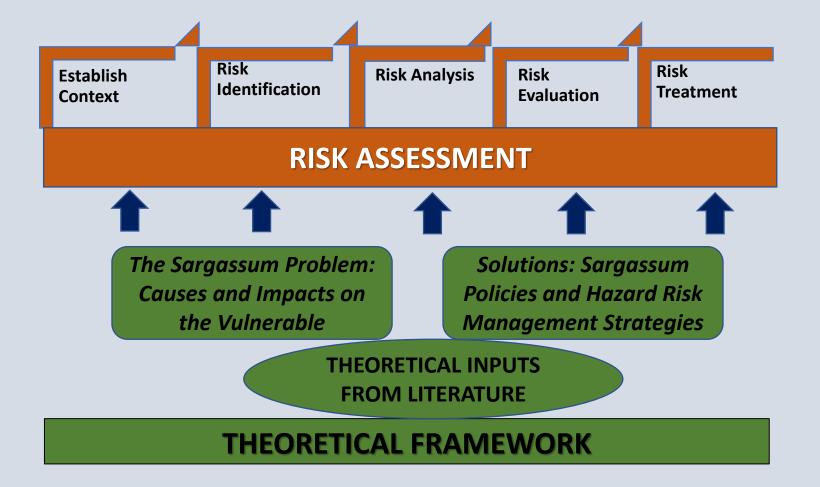
D

MONA GEOINFORMATICS

V

U

Ν


Ε

R

A

В

Y

Μ

0

S

Μ

Α

R

G

Ν

Α

Ζ

Ε

D

governance structures

and

setting a

policy

mproved

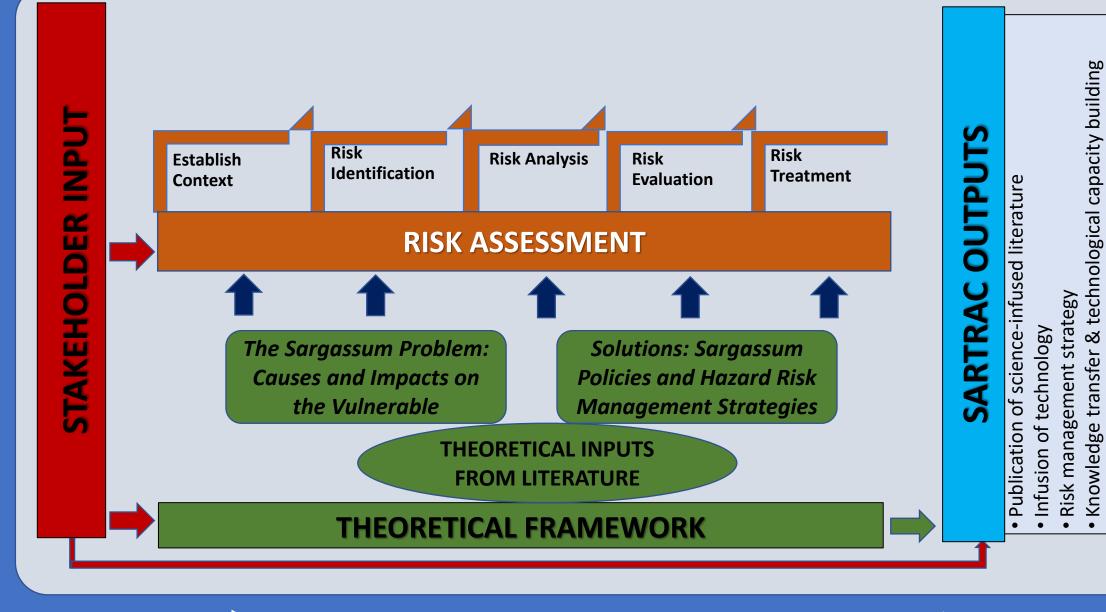
MONACIÓ

V

U

Ν

Ε


R

A

В

Y

MGI MONA GEOINFORMATICS INSTITUTE

EQUITABLE RESILIENCE

Μ

0

S

Μ

Α

R

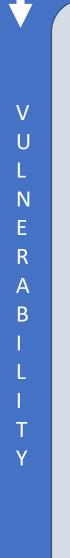
G

Ν

Α

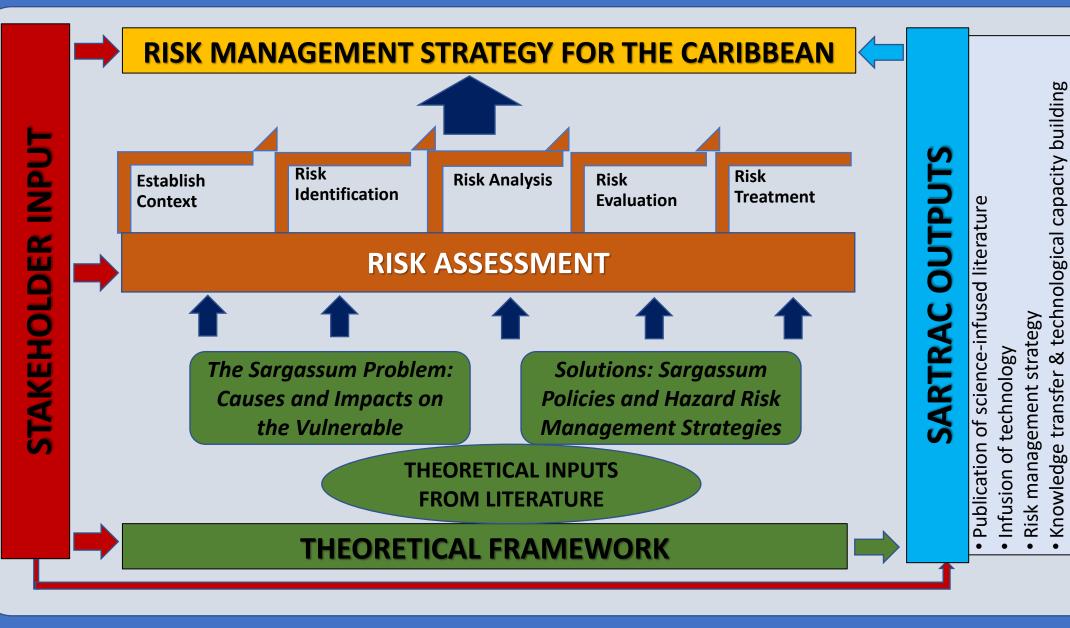
Ζ

D

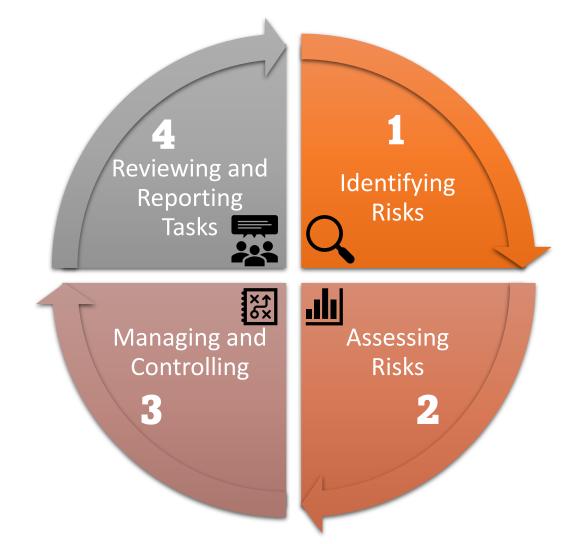

governance structures

and

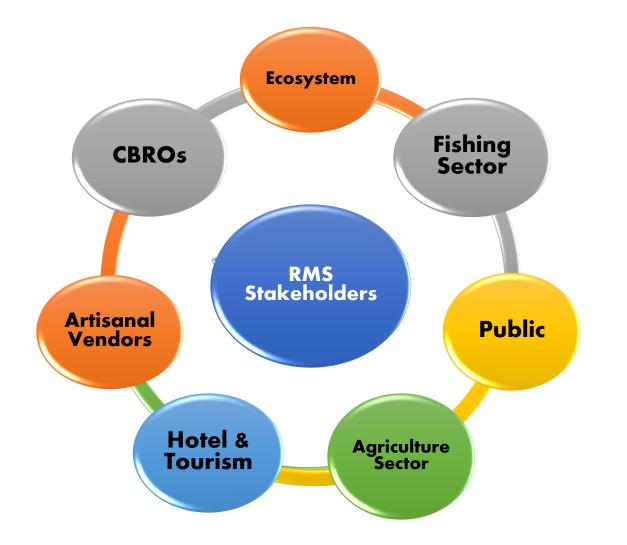
setting a


policy

mproved


MONACIS

MGI MONA GEOINFORMATICS INSTITUTE



THE PROCESS

STAKEHOLDERS

RISK IDENTIFICATION

BIODIVERSITY

- Formation of anoxic zones [fish die off]
- Inc. organic loading and oxygen dec. = eutrophication
- Release of toxic H2S (g) and heavy metals
- Reduction in light penetration at depth
- Introduction of invasive species

HUMAN HEALTH AND SAFETY

- H₂S hazardous to human health
- Overwhelmingly H₂S (g) = stressful working environments

Fig 6. Effects of eutrophication on marine life (*Source:* University of Maryland Center for Environmental Science)

RISK IDENTIFICATION

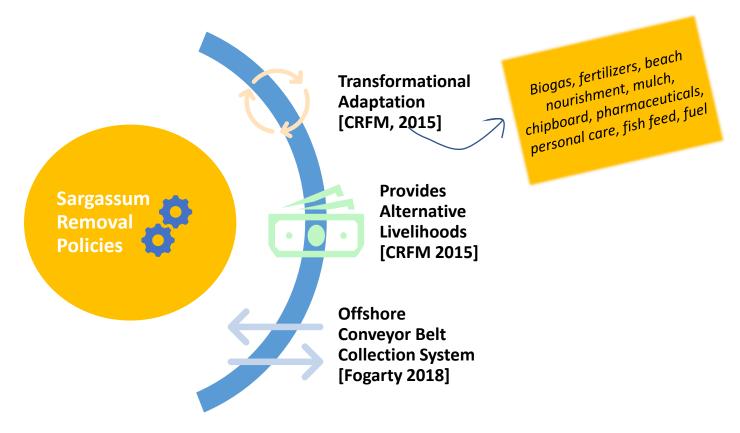
POLICY

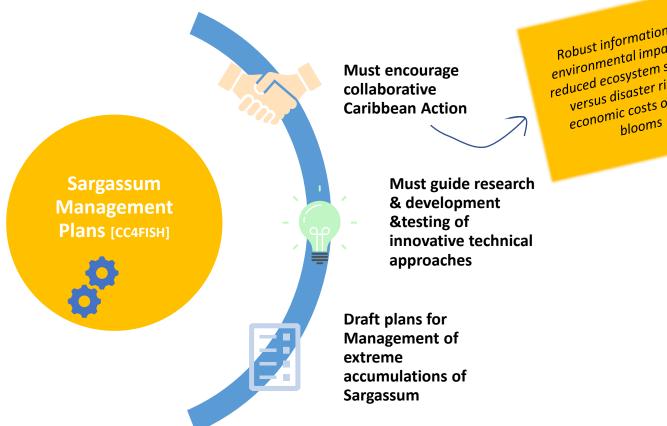
- No sustainable management policies for Sargassum
- Lack of access financial assistance/ insurance for stakeholders
- No policies for price control (fishers risk losing income)
- Lack of Sargassum removal procedures (habitat damage)
- Health implications of Sargassum fertilizer (for agriculture)

Fig 7. Fisherman, Portland Jamaica (Source: Transformation Implementation Unit, GOJ)

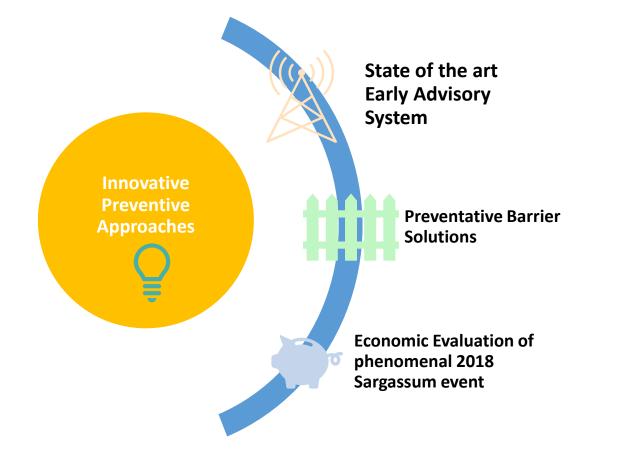
RISK IDENTIFICATION

SOCIOECONOMIC

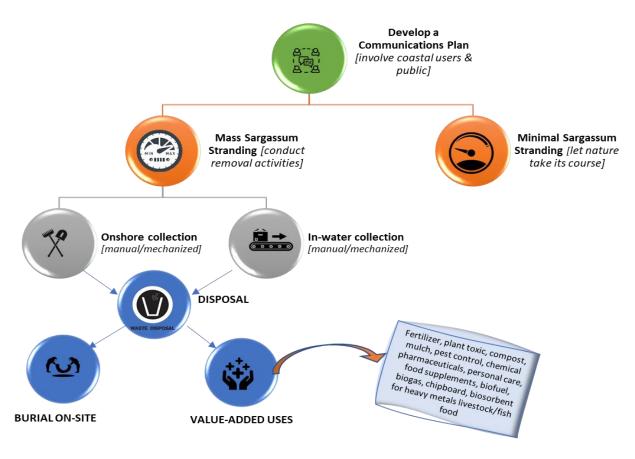

- Impedes operation of fishers and vessels
- Damages fishing equipment and vessels
- Negative changes in fish communities
- Loss of income earning opps
- Interruptions in services provided by CBOs
- Reduced disposable income for households
- More time at sea
- Inc Fish prices = Dec income for fishers
- Increased maintenance costs for fishing equipment
- Increased debt to substitute for loss of income
- Fishers selling less fish
- Decreased sales due to fish species in short supply
- Reduced profits lead to reductions in necessary expenditures
- Costs incurred for transformational use of sargassum


Fig 8. Cleaning sargassum seaweed from the beaches of Placencia, Belize. (*Source: The Guardian 'How do you deal with 9m tonnes of suffocating seaweed?*)

- Promotes beach clearance as the main response to management of Sargassum strandings
- Offshore conveyor belt system to collect Sargassum before in lands ashore (CRFM, 2016; Fogarty, 2018)



Robust information on environmental impacts of reduced ecosystem services versus disaster risks & economic costs of mass blooms



Stimulating innovative preventative approaches for Sargassum (Mexico News Daily 2018; Government of Antigua and Barbuda 2018; Mufson 2018; Moscoco 2018)

Sustainable Management/Management Best Practices requires local action, regional coordination &collaboration (Hinds et al 2016 and Desrochers et al 2020)

NEGATIVE IMPACTS	ADAPTATIONS BY FISHERS
Restricted type of fisheries	 Switched gear, fishing method/target spp
Turtles impacted	 Community groups clean nesting beaches
Seaweed drove away some fish	 Changed fishing grounds to avoid mats.
Some fish lived in seaweed difficult catch	Fish around mats for larger spp

NEGATIVE IMPACTS	ADAPTATIONS BY FISHERS
Seaweed entangled nets	 Net fishers avoid fishing around mats or used other gear types
Restricted movement of boats.	 Fishers and boat captains drove around the Sargassum mats Some fishers returned to shore when the seaweed was too thick. Some fishers use satellite imagery (internet) to ID fishing grounds. Radios used to find out and inform others about locations to avoid.
Damage to boat engines	 Used radio to warn other fishers of Sargassum mats. When it is stuck in propellor: stop, reverse and get 'moss' out. If the bearing is damaged & unavailable, local agent can import Some fishers use strainers over the engine's intake

NEGATIVE IMPACTS	ADAPTATIONS BY FISHERS
Decrease in revenue for most fishers	 Some found jobs in other areas outside of the fishery sector
Affects livelihoods	 Fishers budgeted more and spent more carefully; only buy essentials Some in the harvest sector borrowed money to maintain boats.
Increased maintenance cost.	 Some fishers increased effort by spending more days /hours out fishing. Some boats spent less days, and time fishing to avoid wastage of resources.

NEGATIVE IMPACTS	ADAPTATIONS BY FISHERS		
No policy exists Lack of policy for financial	 Fisheries Authorities Activities: Consultations with various stakeholder groups to devise 		
assistance	solutions		
ack of policy for price control	• Discussions with ministries and agencies on best practices for		
Lack of policy to regulate import and export of fish	 landed Sargassum. Regional information exchange e.g., UNEP SPAW-RAC (Sargassum focus) No specific legislation or policy to address Sargassum events particularly Strategic Action Plan for Fisheries has sections relevant to vulnerabilities 		

RISK LIKELIHOOD

SCALE/LEVEL DESCRIPTOR DESCRIPTION

- **1 Remote** May only occur in exceptional circumstance
- 2 Unlikely Is unlikely to occur but could occur at some time
- **Bairly likely to occur at some time or in some circumstances**
- 4 **Probable** Will probably occur at some time, or in most circumstances
- 5 **Highly Probable** Is expected to occur in most circumstances

DEFINITION OF IMPACT

RISKS	SCALE	EFFECT : Biodiversity
Severe	5	Severe disruption to ecosystem functions and ecosystem services.
Major	4	Loss of species & biodiversity Major disruption to ecosystem functions and ecosystem services
Moderate	3	Serious damage to ecosystem services and species diversity Noticeable disruption to ecosystem functions and ecosystem services
Minor	2	Loss of some species Some disruption to ecosystem functions and ecosystem services
Insignificant	1	Minor loss of species Insignificant disruption to ecosystem functions and ecosystem services No loss of species

RISK PRIORITIZATION

LIKELIHOOD

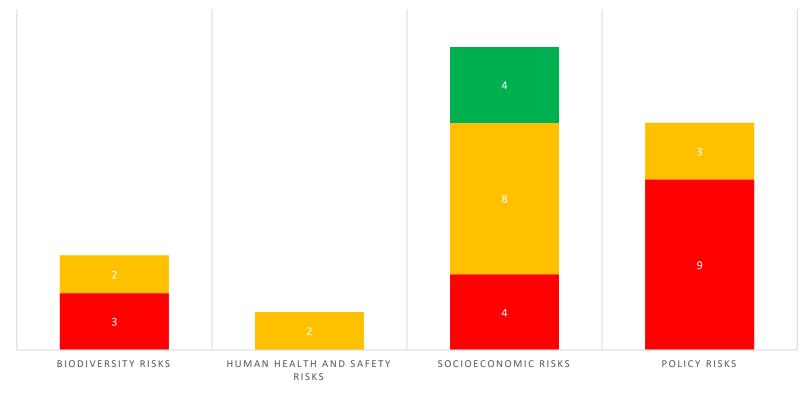
		Remote	Unlikely 2	Possible	Probable	Highly Probable 5
	Severe	5	10	15	20	25
	5	Ť	11	ft	111	111
I M	Major 4	4 =	8 1	12 11	16 111	20
P A	Moderate 3	3 =	6 1	9 1	12 11	15 **
C T	Minor 2	2 =	4 =	6 1	8	10 **
	Insignificant 1	1 =	2 =	3 =	4 =	5 1

Level of risk/ Inherent Risk Score	Indicated by	How the risk should be managed
Very High Risk (16-25)	Red	Requires active management
Medium Risk (5-15)	Amber	Contingency Plans
	Amber	Best Practices

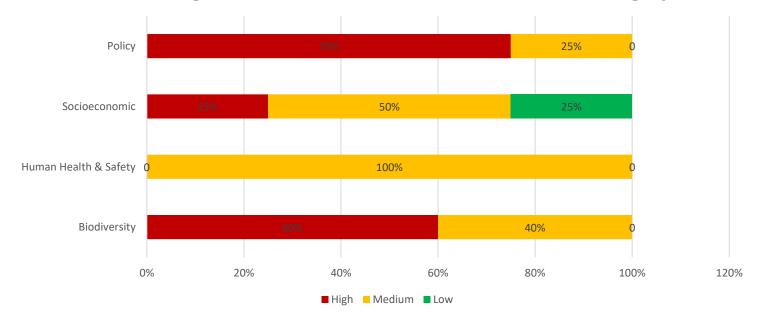
Low Risk (1-4)

Green = Review periodically

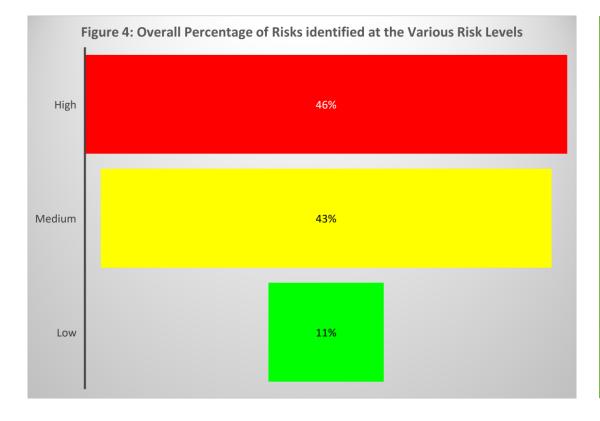
RISK RESPONSE


RATING INTERPRETATION

- **Escalate** When managing the threat is outside the scope of the vulnerable stakeholders in most marginalized communities
- Avoid Eliminating the threat of *Sargassum* strandings or protecting the vulnerable stakeholders from its impacts
- **Transfer** Shifting ownership and management to a third party to bear the impact of the risk
- Mitigate Reducing the probability or impact of the risk by making it a lesser risk
- Accept Doing nothing (usually for low level threats or when it is not cost-effective to alleviate.

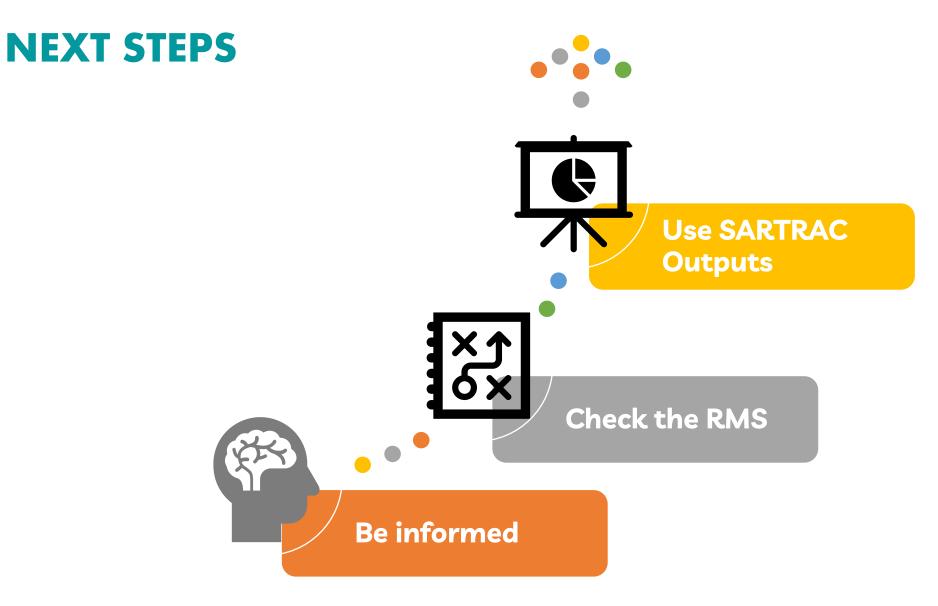

The Risk Action Plan identified thirty-eight (38) risks.

High Medium Low



Percentage of Risks at Various Risk Levels in each Risk Category

Level of risk/ Inherent	Indicate	How the risk should be managed	
Risk Score	d by		
Very High Risk (16-25)	Red	Requires active management to manage down and maintain the exposure at an acceptable level. Escalate upwards.	
Medium Risk (5-15)	Amber	Contingency Plans may suffice together with early warning mechanisms to detect any deviation from the profile.	
		Best Practices (cost effective) to reduce the likelihood can ensure that the impact remains low. Reassess frequently to ensure conditions remain the same	
Low Risk (1-4)	Green =	Review periodically Risks are unlikely to require mitigating actions, but status should be reviewed periodically	



Level of risk/ Inherent Risk Score	Indicated by	How the risk should be managed
Very High Risk	Red	Requires active management to manage
(16-25)		down and maintain the exposure at an
		acceptable level. Escalate upwards.
Medium Risk	Amber	Contingency Plans may suffice together
(5- 15)		with early warning mechanisms to
		detect any deviation from the profile.
		Best Practices (cost effective) to reduce
	Amber	the likelihood can ensure that the
		impact remains low. Reassess frequently
		to ensure conditions remain the same
Low Risk (1-4)	Green =	Review periodically Risks are unlikely to
		require mitigating actions, but status
		should be reviewed periodically

THANK YOU!

Find us on our website: MGI Blue - http://blue.monagis.com/ MGI - www2.monagis.com SARTRAC project – www. sartrac.org